Intel Optane DC P5800X PCIe 4 NVME SSD Review – SSD Perfection Via Throughput, IOPS and Latency

REPORT SUMMARY AND FINAL THOUGHTS

I am fortunate that I have been involved in the storage industry since the first SSD appeared and am regarded favorably by manufacturers and peers alike (at least I think).  The truth is that I am still like a kid in a candy store when it comes to storage and am grateful that this has remained my pleasure rather than primary occupation. I have an absolute pile of products to review with many others that fall under terms such as NDA or embargo, yet I couldn’t wait for the Intel SSD Optane DC P5800X 800GB SSD to arrive and push all others aside.  Even now, I can only think about how my main PC used for developing media is going to fit the P5800X as a system drive to include some of the most demanding media software in the industry…and it will run all smoother than they have ever run. I am not alone.  There are others that feel much the same but wouldn’t ever put it in print.

Intel Optane has been long regarded as the Holy Grail of storage and its reputation is well deserved.  The P5800X achieved PCIe 4 performance up to 7.2GB/s and 1.5 million IOPS.  The secret to Optane is its low latency though and, even in benchmarks such as Crystal DiskMark, latency results under 10µ were achieved.  We are not alone in stating that the P5800X has resulted in the highest performance results ever achieved in just about every commonly used benchmark available for storage testing.  Results weren’t even close.  Now, add to that a 5-year warranty that carries a 100DWPD guarantee to a total of 146 petabytes.  This SSD should go into a time capsule. Can we find a negative?

Price.  If you just have to have the Intel Optane DC P5800X Gen 4 NVMe SSD, you are going to pay what many would regard as a steep premium.  On the street right now, we found the P5800X for $1224US (400GB), $2103 (800GB) and $3837 (1.6TB). But then again, this SSD wasn’t created for the typical consumer, or even the enthusiast.  It is a data center SSD (hence the DC) envisioned for work stations and we are going to bet those that work in media will be all over this as well.

It is the little things though.  This was shown through temperature monitoring where we were able to suggest that the P5800X just may be the coolest running Gen 4 SSD in the industry.  In addition, we were able to demonstrate that, even at 90% full, the P5800X runs better than new, and also, that there is no drop in performance during very large file transfers.  This is unheard of in today’s SSD industry.

Editor’s Choice…but who wouldn’t have guessed.

Check Intel Optane DC P5800X Gen 4 SSD Pricing at Amazon.

Intel SSD Optane DC P5800S Ratings

Product Build
Performance
5-Year Warranty/100DWPD
Pricing and Availability

146PB Endurance

The Intel Optane P5800X achieved performance of 7.2GB/s throughput, 1.5mil IOPS and ultra low latency., all the while with an endurance guarantee of 5-years or 146PB.

Check Amazon
User Rating: Be the first one !

14 comments

  1. For the price I would consider the SSD has at least 16 PCIe lanes and not this bottleneck with 4 lanes.

  2. If the SSD has sequential write speed of 5.6 GB/s, how comes that in that 425 GB file transfer test on page 5 it shows only 2.45 GB/s? Was it bottlenecked by reading speed of another SSD used as source? This is a faulty test, I think. You make a conclusion that P5800X does not drop its write speed, but in reality you tested that it only maintains 2.45 GB/s speed. You did not test how it maintains its full write speed. Your max temperature test is also faulty, since it is based on the same file transfer test limited to less than half of max write speed. If you transfer the same 425 GB folder at max speed of 5.6 GB/s (using a pcie gen 4 SSD as source) then max temperature could be way higher.

    • Despite your best efforts at negating the validity of this report, I always welcome the opportunity to assist others. If you have a decent grasp of storage, you will understand that listed specifications with respect to flash storage are just that, listed specifications. They are a unrealistic high that are seldom reached in reality, and do more to sell SSDs and storage than serving any real purpose. Several years ago I did a study of just this and determined that an SSD EVER reaches its real peaks only about .04% of the time. This is exactly the same when, in your scenario listing the ‘sequential write speed’ you are hoping to hit these highs. This is nothing new and I don’t know of a single SSD in the hundreds that have been through our hands that has ever reached its peak (or sequential write high) as you discuss here, during file transfer…not one. In fact, of all the reports I have ever seen in the industry, I have not ever seen even one. Now, there are many factors that are the cause of this, the first being of course that manufacturers determine their listed specifications with of benchmarks such as ATTO that provide a high performance variable through sequential data transfer. As well, different types of data transfers at different speeds depending on size, compression used and other variables, this being front and center in our true testing. Next up…temperature. If you are relying on your first point to validate your second, this point has now been negated but… Temperature is very easy to determine while monitoring a SSD during testing, which is explained very clearly.

      • I’m not “negating” anything – I just asked if that write speed could be bottlenecked by reading speed of the source disk. Based on your response, I assume it wasn’t? I currently have Samsung 970 Pro, and it reaches 2 GB/s in actual file transfer speed (according to the same Windows popup window, not according to synthetic tests). That’s why I thought that 2.45 GB/s in real file transfer speed for P5800X is kind of low, taking into account how much more advanced it is. Either way, thanks for responding.

      • Prior to responding, I had a few industry peers provide thought on your input. The received response for the most part was to simply delete or ignore your comment as you state how the testing was faulty, prior to simply asking why such and such result was achieved. I elected to respond to assist. Setting that aside, you have shown exactly what I described with the 970 Pro reaching 2GB/s in actual transfer speed. By your model, I would ask why it doesn’t reach the full 3.5GB/s transfer speed. Hope this helps.

  3. Les, I’m not real familiar with the Ryzen architecture but wanted to know if it supports any PCI-E lanes direct into the CPU like the newer Intel CPUs do. I’d be curious to know if that generates any better performance specs on SSDs over running them through chipset lanes.

    • AMD Ryzen CPUs (And more specifically the x570 motherboards) support PCIe lanes from the CPU natively, and others via the chipset. It all stacks up very similarly to Intel’s solutions.

      In general, the x16 graphics slot + 1 x4 NVMe slot generally come natively from the on-die PCIe lanes, and the rest come from the chipset.

      Graphic here from Anandtech’s x570 motherboard roundup, showing the lane breakdowns:

      https://images.anandtech.com/doci/14161/X570.png

      • So, there are some caveats with that. Yes, there are 4 lanes dedicated to the first NVME / m.2 slot, but they are electrically connected to that M.2 slot. You would have to use an M.2 to U.2 adapter of some sort to plug the drive in to the m.2 slot. It can be done, but PCIe 4.0 is a real stickler for signal integrity and trace length. I have not seen a good u.2 to m.2 adaptation setup that reliably supports PCIe 4.0 speeds. I have some parts on the way that will be tested soon to see if the m.2 socket can be made to work properly with this drive.

        The author is using a PCIe carrier card that adapts the drive directly to a PCIe slot. This is a viable connection method but has some drawbacks for an enthusiast system. Consumer amd be intel systems will bifurcate the 16x PCIe slot that the gfx card uses down to the required two 8x PCIe slots if you plug the carrier card into the motherboards second cpu direct attached 16x slot. While this is fine for the nvme drive, it does create some minor performance issues for the gpu if you have a baller enough GFX card (rtx 3090. . .).

        Plugging this kind of drive into a chipset connected PCIe slot would likely negate the benefit of having a drive that has the performance characteristics that this one has.

  4. Thanks for your review. I’m interested in random performance and latency for my apps. My suspicions have been confirmed. Cheerz.

  5. Want the AMD #s up there with Intel #s?
    Simply mod the Intel driver’s .inf file a bit.

    My 800P:
    Q1 R4K read: 200 to 291 MB/s
    Q1 R4K Write: 161 to 217 MB/s

    Screenshot and linked driver in my FarceBook post here:
    https://www.facebook.com/groups/AMDHardwareEnthusiasts/posts/3083610618363854/?__cft__%5B0%5D=AZW0Ohn2H97vVE3CtHDwoLDG7A4Rx-Hol8tVupcZY_LedzCFmhRTw4si_OjFNc1JrhFN-tM1OPZppHhQfvBJQJETKYrhZRUyF-flb2_lGKd6nwvOrKE5w9ICUakxxv_8dSKM4xBxt4hhWMV_JiJ9R_1U&__tn__=%2CO%2CP-R

  6. Any chance to get AMD vs Intel CPU benchmarks on Linux (e.g. Debian)? AMD usually performs better on Linux than Intel. Would be interesting to see if that carries over to the SSD benchmarks.

  7. The best thing about Optane is not the durability or the latency, it is that it doesn’t need a cache. You can up the copy test size as much as you want and it will stilll go like hell.

    There is no cache misses with Optane. I am done with Nand, I just want Optane v2 to get cheap enough that my wife won’t kill me when I buy it.

Leave a Reply