Intel Optane DC P5800X PCIe 4 NVME SSD Review – SSD Perfection Via Throughput, IOPS and Latency


SSD testing at TSSDR differs slightly, depending on whether we are looking at consumer or enterprise storage media. In today’s testing we will be comparing performance of this Intel Optane DC P5800X NVMe Gen 4 U.2 SSD on both our Intel and AMD Gen 4 Test Bench PC’s. Both PC’s have been optimized to provide the absolute highest performance available, and have been optimized with our SSD Optimization Guide.


The software in use for today’s analysis is typical of many of our reviews and consists of Crystal Disk Info, ATTO Disk Benchmark, Crystal Disk Mark, AS SSD, Anvil’s Storage Utilities, AJA, TxBench, PCMark 10, as well as true data testing. Our selection of software allows each to build on the last and to provide validation to results already obtained. At first glance, one might think that AMD has the definite advantage. Watch closely though as we walk you through PCMark as well as True Data Testing, in addition to our typical regimen of benchmark software.


For this Test Bench, the CPU C-States, Enhanced Intel SpeedStep Technology (EIST) and Intel Speedshift (P-States) have not been disabled. As you will see below, the system is also bumped to 5.3GHz with memory at full speed in its XMP 2 profile.

The components of this Test Bench are detailed below. All hardware is linked for purchase and product sales may be reached by a simple click on the individual item. As well, the title is linked back to the individual build article where performance testing can be validated. Clicking on the Title below will bring you to our complete report on this new Gen 4 PC system.

INTEL Z590 PCIE 4.0 COMPONENTS (Click for System Report)

PC CHASSIS: Corsair 5000X RGB White Tempered Glass Chassis
CPU: Intel 11th Gen Core i9-11900K
CPU COOLER: Corsair Hydro Series H150i Capellix White
POWER SUPPLY: Corsair RM850x 80Plus White
GRAPHICS: ZOTAC GeForce RTX 3080 Trinity White
MEMORY: Corsair Dominator Platinum RGB DDR4-3200 32GB
STORAGE: Sabrent Rocket 4 Plus Gen 4 4TB NVMe SSD
KEYBOARD: Corsair K70 RGB Mk. 2 SE White Gaming
MOUSE: Corsair M65 RGB Elite FPS Gaming
MONITOR: Samsung 34″ 1440p WQHD Ultrawide Gaming


Our ASRock X570 Creator Test Bench AMD based and contains the AMD Ryzen 3700x Gen 4 CPU. Our PC has been overclocked from 3600Mhz to 4300MHz and memory has been set at a XMP profile of 2667MHz,

The components of this Test Bench are detailed below. All hardware is linked for purchase and product sales may be reached by a simple click on the individual item. As well, the title is linked back to the individual build article where performance testing can be validated. Tons of credit to this Cougar Blazer Gaming Case paired with Corsair fans and Corsair iCue RGB software which make this our most attractive case to date.


PC CHASSIS: Cougar Blazer Open Frame Gaming Mid-Tower Case
MOTHERBOARD: ASRock X570 Creator PCIe 4.0
CPU: AMD Ryzen 3700x
CPU COOLER: Corsair Hydro H150i Pro RGB 360mm Liquid Cooling
POWER SUPPLY: Corsair RM850x 80Plus
GRAPHICS: MSI Armor Mk 2 Radeon RX570 OC
MEMORY: Corsair Vengeance LPX DDR4 3600MHz
STORAGE: Intel Optane 905P 1.5TB SSD
KEYBOARD: Corsair K57 Wireless Gaming
MOUSE: Corsair Dark Core RGB SE Wireless BT Gaming
OS Microsoft Windows 10 Pro 64 Bit


Crystal Disk Info is a great tool for displaying the characteristics and health of storage devices. It displays everything from temperatures, the number of hours the device has been powered, and even to the extent of informing you of the firmware of the device.

Looking at the Crystal Disk Info information, one can tell that we put alot of testing into this SSD with 30TB of host reads and just about 18TB of host writes.  Strill, the Health is listed at 100% and she still runs very cool in comparison.


  1. For the price I would consider the SSD has at least 16 PCIe lanes and not this bottleneck with 4 lanes.

  2. If the SSD has sequential write speed of 5.6 GB/s, how comes that in that 425 GB file transfer test on page 5 it shows only 2.45 GB/s? Was it bottlenecked by reading speed of another SSD used as source? This is a faulty test, I think. You make a conclusion that P5800X does not drop its write speed, but in reality you tested that it only maintains 2.45 GB/s speed. You did not test how it maintains its full write speed. Your max temperature test is also faulty, since it is based on the same file transfer test limited to less than half of max write speed. If you transfer the same 425 GB folder at max speed of 5.6 GB/s (using a pcie gen 4 SSD as source) then max temperature could be way higher.

    • Despite your best efforts at negating the validity of this report, I always welcome the opportunity to assist others. If you have a decent grasp of storage, you will understand that listed specifications with respect to flash storage are just that, listed specifications. They are a unrealistic high that are seldom reached in reality, and do more to sell SSDs and storage than serving any real purpose. Several years ago I did a study of just this and determined that an SSD EVER reaches its real peaks only about .04% of the time. This is exactly the same when, in your scenario listing the ‘sequential write speed’ you are hoping to hit these highs. This is nothing new and I don’t know of a single SSD in the hundreds that have been through our hands that has ever reached its peak (or sequential write high) as you discuss here, during file transfer…not one. In fact, of all the reports I have ever seen in the industry, I have not ever seen even one. Now, there are many factors that are the cause of this, the first being of course that manufacturers determine their listed specifications with of benchmarks such as ATTO that provide a high performance variable through sequential data transfer. As well, different types of data transfers at different speeds depending on size, compression used and other variables, this being front and center in our true testing. Next up…temperature. If you are relying on your first point to validate your second, this point has now been negated but… Temperature is very easy to determine while monitoring a SSD during testing, which is explained very clearly.

      • I’m not “negating” anything – I just asked if that write speed could be bottlenecked by reading speed of the source disk. Based on your response, I assume it wasn’t? I currently have Samsung 970 Pro, and it reaches 2 GB/s in actual file transfer speed (according to the same Windows popup window, not according to synthetic tests). That’s why I thought that 2.45 GB/s in real file transfer speed for P5800X is kind of low, taking into account how much more advanced it is. Either way, thanks for responding.

      • Prior to responding, I had a few industry peers provide thought on your input. The received response for the most part was to simply delete or ignore your comment as you state how the testing was faulty, prior to simply asking why such and such result was achieved. I elected to respond to assist. Setting that aside, you have shown exactly what I described with the 970 Pro reaching 2GB/s in actual transfer speed. By your model, I would ask why it doesn’t reach the full 3.5GB/s transfer speed. Hope this helps.

  3. Les, I’m not real familiar with the Ryzen architecture but wanted to know if it supports any PCI-E lanes direct into the CPU like the newer Intel CPUs do. I’d be curious to know if that generates any better performance specs on SSDs over running them through chipset lanes.

    • AMD Ryzen CPUs (And more specifically the x570 motherboards) support PCIe lanes from the CPU natively, and others via the chipset. It all stacks up very similarly to Intel’s solutions.

      In general, the x16 graphics slot + 1 x4 NVMe slot generally come natively from the on-die PCIe lanes, and the rest come from the chipset.

      Graphic here from Anandtech’s x570 motherboard roundup, showing the lane breakdowns:

      • So, there are some caveats with that. Yes, there are 4 lanes dedicated to the first NVME / m.2 slot, but they are electrically connected to that M.2 slot. You would have to use an M.2 to U.2 adapter of some sort to plug the drive in to the m.2 slot. It can be done, but PCIe 4.0 is a real stickler for signal integrity and trace length. I have not seen a good u.2 to m.2 adaptation setup that reliably supports PCIe 4.0 speeds. I have some parts on the way that will be tested soon to see if the m.2 socket can be made to work properly with this drive.

        The author is using a PCIe carrier card that adapts the drive directly to a PCIe slot. This is a viable connection method but has some drawbacks for an enthusiast system. Consumer amd be intel systems will bifurcate the 16x PCIe slot that the gfx card uses down to the required two 8x PCIe slots if you plug the carrier card into the motherboards second cpu direct attached 16x slot. While this is fine for the nvme drive, it does create some minor performance issues for the gpu if you have a baller enough GFX card (rtx 3090. . .).

        Plugging this kind of drive into a chipset connected PCIe slot would likely negate the benefit of having a drive that has the performance characteristics that this one has.

  4. Thanks for your review. I’m interested in random performance and latency for my apps. My suspicions have been confirmed. Cheerz.

  5. Want the AMD #s up there with Intel #s?
    Simply mod the Intel driver’s .inf file a bit.

    My 800P:
    Q1 R4K read: 200 to 291 MB/s
    Q1 R4K Write: 161 to 217 MB/s

    Screenshot and linked driver in my FarceBook post here:

  6. Any chance to get AMD vs Intel CPU benchmarks on Linux (e.g. Debian)? AMD usually performs better on Linux than Intel. Would be interesting to see if that carries over to the SSD benchmarks.

  7. The best thing about Optane is not the durability or the latency, it is that it doesn’t need a cache. You can up the copy test size as much as you want and it will stilll go like hell.

    There is no cache misses with Optane. I am done with Nand, I just want Optane v2 to get cheap enough that my wife won’t kill me when I buy it.

Leave a Reply