Sabrent Rocket XTRM-Q Thunderbolt 3 NVMe 8TB External SSD Review – Speechless

Oh my.  Having been involved in the flash industry since 2007, I can honestly say I never thought I would have in my hands what I have today….an 8TB external SSD that is powered by only its Thunderbolt 3 data cable  and is 4″ long by 1.75″ wide by 1/2 thick.  It can move data at speeds up to 2.7GB/s.  We have been there with this description once already in our Sabrent Rocket Q 8TB review but…  the 8TB Rocket  XTRM-Q will hold 136,000 hours of music, 320 days of video, 1,480,000 photos or 4000 hours of movies…and you can slip it in your front pocket and simply plug it into any PC.

All the credit to Sabrent.  They have seen the success in flash and there is nothing stopping them now.  We are not even sure if another SSD manufacturer would ever even consider making a 8TB Thunderbold 3 portable SSD…ever.  Any takers?  Samsung?  SanDisk?  Plugable?  ADATA?  Actually as funny as it seems having Plugable included in this list, they are probably the only that might try to better such a feat.  They are another large company that has only recently, like Sabrent, spread its wings in the flash industry.

The Sabrent Rocket XTRM-Q External SSD is a Thunderbolt 3 PCIe x4 external SSD that uses the NVMe 1.3 protocol. It is available in capacities of 500GB, 1,2,4 and 8TB and automatically detects and connects to Tbt3, or any of the USB 3 connections.  It’s specifications list speeds up to 2.7GB/s with Tbt3 or up to 900MB/s with USB-C connections. WE have tested and it reaches over 1GB/s with USB 3.2.

The Rocket XTRM-Q is plug and play and we initially into a bit of difficulty, no fault of Sabrent, but something that caught us off guard. In three different systems, the Sabrent Rocket XTRM-Q wasn’t recognized.  Talk about panic.  The end cause was simply our ThunderBolt 3 settings in our PC BIOS being set to Security/User Authorization.  So normally, what might happen is a pop-up would appear notifying us that a new Thunderbolt 3 device has been recognized and asking for our approval.  That didn’t happen.  Nothing.  So we explored, went into settings and changed them to ‘No Security’ and all was good.  We might add that it popped up immediately with our USB-C 10Gbps laptops and we immediately tested performance up to 1GB/s with the included USB-C to USB-C cable, and up to 490MB/s using the USB-C to USB 3.1 cable.

Recently, we posted a review of the newest Sabrent Rocket Q 8TB NVMe SSD and we may have mentioned that the ONLY REASON we can get so much storage in such a small device, is because the Rocket Q uses Micron’ latest  96-layer QLC (4-bit) flash NAND memory.

Inside the Rocket Q are 8 1TB flash packages, a Phison PS5012-E12 NVMe 8-channel controller and two Kingston DRAM chips. Inside this Rocket XTRM-Q External SSD is the Rocket Q 8TB M.2 NVMe SSD. Warranty.  I really like this business model.  It is 1-year initially, extended to 5-years when you register with Sabrent.

Solid.  The Sabrent Rocket XTRM-Q External SSD is cut from a solid piece of aluminum.  As disappointed as we are, it cannot be opened without destruction and the thick aluminum exterior provides for durability and heat dissipation.  Sabrent describes the Rocket XTRM-Q as having an integrated temperature and health monitoring system.

Packaging for the Sabrent Rocket XTRM-Q is as with their full SSD line, in that, they ship their SSDs in very stylish metal cases.  First appearances are everything, even with SSDs that will be tucked away inside a PC.

Checking Amazon pricing right now, we can see that the Sabrent Rocket XTRM-Q has a release date of 26 Jul 2020 but they are already listed.  Pricing is set at $220.58 (1TB), $363.50 (2TB), $833.83(4TB) and $1614.68 for the 8TB version we are testing today.

13 comments

  1. Hey Les just a quick question. Any word on when finally any drives based on the Phison E-18 will actually go to retail. Would be nice to get a drive with the potential for 7GB read and writes :}

  2. I think this might be one of the first external drives that uses a Titan ridge chip vs. an Alpine Ridge chip.

    Good to see someone finally using a TB3 controller in an external device that supports auto-switching between TB3 and USB3.

  3. Any idea how these are manufactured such that they can only be opened destructively? It’s hard to imagine that there exists no way for Sabrent to examine a faulty drive without a Dremel. (I own four of their 4TB XTRM PROs and have one of these on order for the 30th.)

    • First off, I might normally chance the destruction but this product is not worth that chance. It is put together by a plate on the top but I cannot find any way to remove that plate, as it is so tightly set. It is a very fine cut. Similarly, there are no screws and the only way to get in there, IMO, would be to wedge a knife in causing visible damage. I contacted Sabrent and they stated that it cannot be opened without destroying the drive. Doesn’t really matter though as we know the drive inside…

  4. Does it get hot? Too hot? Which temperature? And most importantly, does it suffer Thermal Throttling? Does it reduce then the speed? How much? Thanks!

    • Rather unusual question for a ThunderBolt 3 device.Gets a bit warm but nothing that merits temperature readings. I have never known any Tbt3 device to thermal throttle as it doesn’t reach anywhere near the max capability of the drive ever because of TbT 3 overhead. If you know of or have experienced TbT 3 thermal throttling, please send a link my way. I would love to see the post.

    • I looked at your links and there are so many questions as to what they are doing that I don’t know where to start. What was the type of data used and how much data was pushed through before that write drop in the SSD? Did it fill? Was it being pushed into steady state which caused that? How and why did they maintain a steady transfer speed of 2000MB/s. I can’t speak to what they test but to say that your purchase should match your specific need. If you bought this SSD, what are you going to use it for that you think might push it into thermal throttling? We also have to remember that they are testing SSDs without any thermal protection on them as hthis SSD does. Much like an enclosed data center ssd, this SSD would have its heat moved to the outside of the drive where it would dissipate naturally.

      • The purpose of the thermal throttling test is twofold:

        1. Worst-case scenario with 512 K sequential read or write over a relatively small area (a few GB) to prevent the SLC cache overload (if present).

        2. Performing also a Thermal Limits test, using a fixed write rate.

        Why? Just to check the thermal throttling of the SSD. Some users may be in the scenario 2, but others may be in the scenario 1, or just want to know about it. That includes large corporate orders in which SSD may be used for extreme continuous loads.

        Imagine that someone wants to fill the 8 TB external SSD with small, large o mixed files as soon as possible. Would that be possible, or would de device slow down so much as to take days, or even freeze, crash or reboot the Mac, as we have experienced with some SSD in the past? If working, how long would it take to fill the 8 TB drive?

        Devices should be tested as they are sold by manufacturers, which may include or not thermal protection. So, the only way to know if a particular SSD has thermal throttling is to test it. Both with low and extreme high load. Then, let the users decide, depending on their use and preferences. Information is good and it is great when such information shows on reviews. Choices are good. That is the reason of my question.

    • I understand what the purpose is very well but there is no need as this is a portable Tbt3 device that has more than sufficient passive cooling atttached to it. The tests others have done are simply on bare SSDs. Sorry that I cannot assist any further. Trust me when i say that if there was any thermal throttling to be seen, I would have seen it in my testing. None. I have never seen such out of ANY TbT 3 SSD and this is because it is significantly lower in reads and especially writes than SSDs installed in systems.

      • Thanks for the information. In our experience, most thermal throttling issues arise with external devices (and mostly with PCIe NVMe than with SATA), since internal ones usually have better cooling aids, including the complete computer enclosure. Think for instance on a MacBook or iMac aluminium body, actually working as giant heat sinks, besides the large volume and big fans inside.

        I have been talking to some SSD manufacturers these days, and they say that they do not have released such large-capacity external portable SSD yet because of such thermal throttling problems. They are thinking on doing it with SATA disks first, which are less prone to thermal throttling than PCIe NVMe, and then with the latter, once they fix the thermal throttling problems, but they are not sure that they could do it. So, it seems that there is a real technological problem here.

    • It gets extraordinarily hot. I had two occasions on which to clone my MacBook Pro’s 8TB SSD to the QTRM-Q. The first occasion resulted in the failure of the drive, whose case reached temperatures as high as 171F. I bought a second XTRM-Q – which, fortunately, seems to work just fine – however case temperatures during large transfers consistently reach ~160F.

      Yes, those readings are accurate.

      Real world transfers over Thunderbolt 3 max out in the 1900s MB/s, both read and write. For comparison, the 4TB XTRM max out around 2,500 MB/s read, 2,400 MB/s write.

      DriveDx reports that the disk does not thermally throttle, and I have not found that transfer speeds are in any way related to heat…. aside from, of course, heat killing the controller. Or whatever happened with my first 8TB XTRM-Q.

      The failed drive went back to Sabrent. The exchange was accompanied by an unasked-for and surprisingly generous goodwill gesture by Sabrent, and I asked that they let me know what they find with the failed drive.

      We’ll see.

Leave a Reply

Your email address will not be published. Required fields are marked *