Breaking News

Intel DC P3520 Enterprise NVMe SSD Review (1.2TB) – With 3D NAND Comes Value

SERVER PROFILES

While synthetic 100% read or 100% write workloads do a great job of testing the underlying technology and reporting easy to understand results, they aren’t always indicative of how the drive will be used by the end user. Workloads that simulate enterprise environments try to bridge that gap without being overly complex. The process of measuring our server workload performance is the same as measuring random. The drive is first secure erased to get it in a clean state. Next, the drive is filled by sequentially writing to the RAW NAND capacity twice. We then precondition the drive with respective server workload at QD256 until the drive is in a steady state. Finally, we cycle through QD1-256 for 5 minutes each measuring performance. All this is scripted to run with no breaks in between. The last hour of our preconditioning, the average IOPS, and average latency for each QD is graphed below.

Intel DC P3520 1.2TB DB PreconditionIntel DC P3520 1.2TB DB Intel DC P3520 1.2TB DB lAT

The Database profile is 8K transfers, and 67% percent of operations are reads.

During our database run, the Intel DC P3520 shows competitive performance, however, past that, the higher performance SSDs shine. Here it reached 38K IOPS at under 1ms at QD32 and maintained the IOPS performance up to QD256. Consistency was decent with a range of about 6K IOPS as well.

Intel DC P3520 1.2TB ES PreconditionIntel DC P3520 1.2TB ES Intel DC P3520 1.2TB ES lAT

The Email Server profile is similar to the Database profile, only it 8K transfers at 50% reads and 50% writes.

The heavier percentage of writes during our email server profile proved to be more challenging for the Intel DC P3520. Here it averaged 26K IOPS from QD16 on. Performance results also show to be a bit more spread out during preconditioning. 

  • Rados?aw Or?owski

    Looks like solid piece. But I still wait for real optane.

SSD QUICK SEARCH