Silicon Power Slim S80 240GB SSD Review – A Price-to-Performance Sweet Spot

A CLOSER LOOK INSIDE

When we first separate the two halves of the S80’s case, we find the PCB to be screwed down to the back half of the case. The visible side shows eight of the drive’s sixteen NAND chips attached to the teal/turquoise circuit board. Combined with the other eight NAND chips on the controller side of the PCB, the total of 16 chips of 16GB capacity each yields a raw storage total of 256GB, which results in the 240GB of advertised capacity after firmware, overprovisioning, and controller overhead requirements.

SP S80 PCB NAND side final_clipped

Unscrewing the PCB from the rear half of the case reveals the controller side of the S80, with its octet of 16GB NAND chips, the Phison PS3108 controller, as well as a NANYA DRAM chip alongside the controller.

SP S80 PCB controller side final

The NAND chips being utilized are part number TT57G2LAPA, which are Toshiba 19nm MLC flash memory.

SP S80 NAND chips final

Next we see a close-up of the Phison PS3108-S8 controller, which is an 8-channel device that can support up to 64 MLC or SLC NAND chips, and up to 4GB of DDR4 cache. The PS3108-S8 features built-in static and dynamic wear-leveling, power-saving capabilities, and a built-in regulator that supports both 3.3V and 1.8V Flash I/O.

SP S80 phison controller closeup final

The NANYA DRAM chip’s close-up shows a part number of NT5CC256M1GCP-D1. Referring to NANYA’s own part numbering guide on their website indicates that this chip contains 512MB of DDR3-1600 DRAM memory.

SP S80 Nany DRAM chip final

17 comments

  1. blank

    240GB seems nice, but other capacity points just seem too expensive compared to the competition.
    I mean, you can get reactor 1TB for 300€ nowdays.

    • blank

      Benjamin Hojnik you seem to know a lot about ssds. I have been reading your posts for a wile now. I have a question for you. You can respond if you like. Ive asked this question on the forums but so far no ones has answered it. Maybe you know? How does a good amount of mushkin ssds have 2,000,000 hours MTBF when they use asynchronous, synchronous and toggle flash? But other manufacturers have 1,500,000 1,200,000 1,000,000 MTBF. Whats there secret?s MTBF when they use Asynchronous, synchronous and toggle flash? But other manufacturers have 1,500,000 1,200,000 1,000,000 MTBF. What’s there secret?

      • blank

        I wouldn’t focus on MTBF, the industry has no standard for measuring MTBF. Different manufacturers use different workloads to specify their MTBF. All you should really care about is what type of NAND they use. SLC, MLC, or TLC. If they use MLC or TLC NAND, make sure they use SLC caching. That’s it in a nutshell for right now. Best thing to do is read up on it on your own, there’s a lot of information out there.

      • blank

        Type of nand really doesn’t determine reliability of an SSD.
        Not under typical workloads anyway.

        What one should focus about is the controller. Thats the single most important part of the ssd and is also the #1 reason for faulires.

        MTBF is really meaningless, ie more MTBF doesnt mean a more reliable drive, especially when comparing different brands.

      • blank

        I agree on all marks but the type of NAND for reliability. The controller is definitely where reliability is the most important, but higher density NAND flash increases bit rate error. To correct those errors ECC needs to either be programmed, or included in the controller. The type of NAND also affects endurance.

      • blank

        Whats the most reliable nand today?

      • blank

        Anything SLC based 🙂

        Also, sammy’s 3D MLC comes close too. Apperently they internally tested their 128GB model and went thru 8PB of writes. Pretty mad, if its actually true.

      • blank

        Yeah this is true, but ECC engines in modern controllers are so powerfull and there is lots of spare area invisible to the user and controller (sandisk tlc apperently has 1/5 dedicated just for that), so it doesn’t pose that much a problem.

        Crappy nand can be compensated with a proper controller. Crappy controller can’t be compensated with a proper nand.

        Besides, most faulires come down to controller failing or trippin on acid, no failed nand. Some controller can actually withstand flash die faulires just fine (sandforce does that for example).

      • blank

        Whats the most reliable controller today?

      • blank

        Intel, marvell, samsung are pretty good choices with excellent track record.

        Sandforce, phison, jmicron… Not so much (granted, their latter stuff got better).

      • blank

        I thought Intel controllers were/or made by Sandforce/Lsi?

      • blank

        No, Intel actually makes their own controllers too.
        Intel 730 uses their inhouse controller for example.

        But yes, their consumer stuff uses sandforce and is no better than other sandforce based stuff (apart from cherry picked nand).

  2. blank

    No SLC Cache, disappointing. I’ll avoid Silicon Power SSD’s after their controller bait-and-switch tactics on the S60 and S70’s. It’s even worse than what Kingston and PNY did (and I avoid those drives, too).

    • blank

      Agreed. Who knows if the “chip’s close-up shows a part number of” for anything produced by these guys will be accurate down the road.

      • blank

        Their multiple choices of controllers used in these product lines is most definitely why their power consumption specs were generic.

        I wouldn’t be too concerned about a lack of SLC cache in this drive, as it’s not using cheap TLC flash with its inherent latency and longevity concerns vs MLC. SLC hybrid drives often have issues with performance consistency due to firmware design, so sometimes simpler is better when the mfg isn’t cutting corners on flash quality.

        Crucial’s MX200 is a prime example of the mixed bag that SLC hybrid design (DWA in their terminology) can be when applied to an MLC-based drive…until its firmware matures. Anandtech’s review traces are a good example of the potential compromises, mainly in latency issues when the firmware stumbles while managing the SLC-MLC combo under heavy loads. Their BX100 uses a lower end controller and is the simpler “budget” product with pure MLC but doesn’t have the glaring issues under certain loads that the MX200 does, which makes the MX200 unworthy to pay any premium for until the firmware is stabilized–especially since the BX100 is more power efficient.

  3. blank

    The S80 is now down to $84.99 — .35/GB.

  4. blank

    The firmware version tested in this review (7.2 as seen in the benchmark result screen shots) was outdated months before this article was published, and should have been updated to 8.0. I purchased one of these SPCC drives in late 2014 and tested the 8.0 release in January. 8.2 is the current firmware as of earlier this month.

    Firmware updates are very easy using SPCC’s tool, and it automatically checks and installs the required updater when the utility is run since SPCC often swaps between Phison and Sandforce controllers in some of these product lines.

    Making sure firmware is up to date is pretty important on drive reviews, especially these days as they are likely to be optimizing for PCMark 8’s more intensive testing methods (only available in the non-consumer version) vs generally prioritizing burst / light load performance in the past. I have seen negligible differences in the drive’s light load benchmark performance with the new 8.x firmwares vs the stock 7.2, but the story could be very different in the heavier PCMark 8 test traces. If you still have this drive, updated results would be appreciated.

Leave a Reply

Your email address will not be published. Required fields are marked *